메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유현조 (서울대학교) 이정진 (숭실대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제5호
발행연도
2019.10
수록면
763 - 782 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
텍스트 문서 집합에 대한 정보검색에서는 주어진 질의에 부합하는 각 문서의 적합도 확률을 계산하고 이 확률이 높은 것부터 낮은 순으로 문서 순위를 정하여 사용자에게 제공한다, 각 문서의 적합도 확률 계산에 많이 사용되는 모형은 단어들이 확률적으로 독립이라는 가정 하에 확률을 추정한다. 이 모형은 단어들의 결합 확률을 계산하는 것이 현실적으로 어렵다는 점에서 많이 이용되고 있지만 질의에 사용되는 단어들이 대개 서로 관련성을 가지고 있다는 사실을 고려하고 있지 않다. 본 논문에서는 단어 자질들의 의존 구조를 고려하여 문서의 적합도 확률을 계산하기 위하여 단어들의 결합 패턴의 확률을 다항분포 모형으로 가정하고, 최대 엔트로피 방법으로 확률을 추정하여 문서 순위를 매기는 정보검색 모형을 제안한다. 여러 가지 다항분포 상황에서 시뮬레이션 실험을 한 결과 변수들의 독립을 가정한 모형보다 더 우수한 추정 결과를 보여 준다. 실제 LETOR OHSUMED 데이터 이용한 문서 순위 매기기 실험의 결과도 더 나은 검색 결과를 보여 준다.

목차

Abstract
1. 서론
2. 정보 검색과 확률 문서 순위
3. 최대 엔트로피 원리를 이용한 다항분포 확률 추정
4. 시뮬레이션 실험
5. 실제 데이터를 이용한 확률적 문서 순위 매기기 실험
6. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001440676