메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Bo-Hui Lee (Silla University) Seongwon Ryu (Pusan National University) Yong-Seok Choi (Pusan National University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제28권 제4호
발행연도
2021.7
수록면
369 - 391 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The vlda is an R (R Development Core team et al., 2011) package which provides functions for visualization of multidimensional longitudinal data. In particular, the R package vlda was developed to assist in producing a plot that more effectively expresses changes over time for two different types (long format and wide format) and uses a consistent calling scheme for longitudinal data. The main features of this package allow us to identify the relationship between categories and objects using an indicator matrix with object information, as well as to cluster objects. The R package vlda can be used to understand trends in observations over time in addition to identifying relative relationships at a simple visualization level. It also oers a new interactive implementation to perform additional interpretation, therefore it is useful for longitudinal data visual analysis. Due to the synergistic relationship between the existing VLDA plot and interactive features, the user is empowered by a refined observe the visual aspects of the VLDA plot layout. Furthermore, it allows the projection of supplementary information (supplementary objects and variables) that often occurs in longitudinal data of graphs. In this study, practical examples are provided to highlight the implemented methods of real applications.

목차

Abstract
1. Introduction
2. Background
3. The vlda R package
4. Example
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001432536