메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Minseok Shin (Yeungnam University) Jeayoung Lee (Yeungnam University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제30권 제1호
발행연도
2023.1
수록면
21 - 35 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Metabolic syndrome is a serious disease that can eventually lead to various complications, such as stroke and cardiovascular disease. In this study, we aimed to identify the risk factors related to metabolic syndrome for its prevention and recognition and propose a nomogram that visualizes and predicts the probability of the incidence of metabolic syndrome. We conducted an analysis using data from the Korea National Health and Nutrition Survey (KNHANES VII) and identified 10 risk factors affecting metabolic syndrome by using the Rao–Scott chi-squared test, considering the characteristics of the complex sample. A naïve Bayesian classifier was used to build a nomogram for metabolic syndrome. We then predicted the incidence of metabolic syndrome using the nomogram. Finally, we verified the nomogram using a receiver operating characteristic curve and a calibration plot.

목차

Abstract
1. Introduction
2. Methodology
3. Applications
4. Conclusions and discussions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001433235