메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤병일 (FS Inc) 김다혜 (FS Inc) 김영진 (FS Inc) Medard Edmund Mswahili (Chungbuk National University) 정영섭 (Chungbuk National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제4호(통권 제229호)
발행연도
2023.4
수록면
21 - 29 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 인구 조사에서 산업 및 직업 코드를 자동 분류하기 위한 인공지능 기반 시스템을 제안한다. 산업 및 직업 코드의 정확한 분류는 정책 결정, 자원 할당 및 연구를 위해 매우 중요하지만, 기존의 방식은 사람이 작성한 사례 사전에 의존하는 규칙 기반 방식으로 규칙 생성에 필요한 시간과 자원이 많이 소요되며 오류 발생 가능성이 높다. 우리는 본 논문에서 통계 기관에서 사용하는 기존의 규칙 기반 시스템을 대체하기 위해 사용자가 입력한 데이터를 이용하는 인공지능 기반시스템을 제안하였다. 이 논문에서는 여러 모델을 학습하고 평가하여 산업에서 86.76%의 일치율, 직업에서 81.84%의 일치율을 달성한 앙상블 모델을 개발하였다. 또한, 분류 확률 결과를 기반으로 프로세스 개선 작업도 제안하였다. 우리가 제안한 방법은 전이 학습 기술을 활용하여 사전 학습된 모델과 결합하는 앙상블 모델을 사용하였으며, 개별 모델과 비교하여 앙상블 모델의 성능이 더 높아짐을 보였다. 본 논문에서는 인공지능 기반 시스템이 인구 조사 데이터 분류의 정확성과 효율성을 향상시키는 잠재력을 보여주며, 인공지능으로 이러한 프로세스를 자동화함으로써 더 정확하고 일관된 결과를 달성하며 기관 직원의 작업 부담을 줄일 수 있다는 점을 보여준다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. Methodology
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0