메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제18권 제6호
발행연도
2011.11
수록면
837 - 849 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 자기조직화 신경망이 필요한 노드만을 가지고 최적화하여 정규혼합분포를 추정하는 모형을 제안한다. 제안한 모형은 SOMN모형과 벌점가능도를 사용한 모형을 결합한 것이다. SOMN의 장점은 수렴속도가 빠르고 표본의 크기가 작아도 발산하는 가능성이 낮다는 것이며, 벌점가능도를 사용한 모형은 필요 없는 성분의 수를 줄일 수 있다는 것이다. 모의실험을 통하여 제안한 모형이 기대한 결과를 얻음을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001503876