메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제26권 제5호
발행연도
2013.10
수록면
847 - 856 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 Liu 등의 학습 알고리즘과 Wu와 Zhang의 초기 가중값의 범위 설정, 그리고 Gunaseeli와 Karthikeyan의 초기 가중값에 관한 연구 결과를 이용하여 일반화 네트워크를 구할 수 있는 개선된 학습을 제안하고, 최적화된 신경망 학습률들을 이용하여 개선된 학습 과정의 학습효율등을 비교해 본다. 제시된 알고리즘을 이용한 학습에서 학습 초기에는 가장 단순한 학습 패턴과 은닉층으로부터 학습을 시작한다. 신경망 학습과정 중에 지역 최소값에 수렴되는 경우에는 가중값 범위 조정을 통하여 지역 최소값 문제를 해결하고, 지역 최소값으로부터 탈출이 용이하지 않으면 은닉노드를 점차적으로 하나씩 추가하면서 학습한다. 각 단계에서 새롭게 추가된 노드에 대한 초기 가중값의 선택은 이차계획법을 이용한 최적 처리절차를 이용한다. 최적 처리절차는 은닉층의 노드가 추가된 후의 새로운 네트워크에서 학습회수를 단순히 증가시키지 않아도 주어진 학습 허용오차를 만족시킬 수 있다. 본 연구에서 적용한 개선된 알고리즘을 이용하면서 초기 가중값들에 관한 기존 연구들을 적용하면 신경망 학습시의 수렴 정도를 높여주고 최소한의 단순 구조를 갖는 일반화 네트워크로 추정할 수 있게 된다. 이러한 학습률들을 변화시키는 모의실험을 통하여 기존의 연구 결과와의 학습 효율을 비교하고 향후 연구 방향을 제시하고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001584680