메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제24권 제3호
발행연도
2011.6
수록면
485 - 494 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
계수(Count) 데이터는 반응변수가 음이 아닌 계수로, 자동차 사고건수나 지진이 일어난 횟수, 보험처리 발생건수 등을 말한다. 이런 경우에는 주로 포아송 회귀모형을 사용하지만, 평균과 분산이 동일한 경우만 이용될 수 있다는 제약이 따른다. 실증적 자료에서는 그룹 간 이질성으로 인해 분산이 매우 큰 과대산포(Overdispersion) 현상을 볼 수 있는데, 이를 무시할 경우 회귀계수나 표준오차가 편의되는 현상이 발생한다. 보험은 보장성 개념이 강하기 때문에 실제로 보험처리가 발생하지 않는 경우가 많아, 보험처리 건수에 ``0`` 값이 있을 수 있다. 본 논문에서는 ``0`` 값이 많은 자료의 분석을 위해 제로팽창 모형(Zero- Inflated Model)을 고려하고, 여러 모형들의 효율성을 실증자료를 통하여 비교하였다. 실증 자료 분석 결과, 과대산포와 제로팽창 현상이 존재하는 자료에서 제로팽창 음이항 모형(Zero-Inflated Negative Binomial Regression Model)이 가장 효율적인 모형임을 보여 주었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001593909