메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yousef A. Al-Salloum (King Saud University) Abid A. Shah (King Saud University) Saleh H. Alsayed (King Saud University) Tarek H. Almusallam (King Saud University) M.S. Al-Haddad (King Saud University) H. Abbas (King Saud University)
저널정보
한국계산역학회 Computers and Concrete, An International Journal Computers and Concrete, An International Journal Vol.10 No.2
발행연도
2012.8
수록면
197 - 217 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This research deals with the prediction of compressive strength of normal and high strength concrete using neural networks. The compressive strength was modeled as a function of eight variables: quantities of cement, fine aggregate, coarse aggregate, micro-silica, water and super-plasticizer, maximum size of coarse aggregate, fineness modulus of fine aggregate. Two networks, one using raw variables and another using grouped dimensionless variables were constructed, trained and tested using available experimental data, covering a large range of concrete compressive strengths. The neural network models were compared with regression models. The neural networks based model gave high prediction accuracy and the results demonstrated that the use of neural networks in assessing compressive strength of concrete is both practical and beneficial. The performance of model using the grouped dimensionless variables is better than the prediction using raw variables.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0