메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이창영 (동서대학교)
저널정보
한국전자통신학회 한국전자통신학회 논문지 한국전자통신학회 논문지 제8권 제9호
발행연도
2013.9
수록면
1,299 - 1,305 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
이 논문에서 우리는 MFCC 특징벡터의 차원 저감을 통해 음성 인식에서의 계산량을 줄이는 방법을 조사한다. 특징벡터의 특성분해는 벡터의 성분을 분산의 크기에 따라 배치되도록 선형 변환 시켜준다. 첫 번째 성분은 가장 큰 분산을 가져서 패턴 분류에서 가장 중요한 역할을 한다. 따라서, 분산이 작은 성분들을 제외시키는 차원 저감을 통하여, 계산량을 줄이면서 동시에 음성 인식 성능을 저하시키지 않는 방법을 생각할 수 있다. 실험 결과, MFCC 특징벡터의 성분을 절반 정도로 줄여도 음성인식 오류율에 큰 악영향이 없음이 확인되었다.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0