메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sara Khodadad (공주대학교) 조상희 (공주대학교) 장동호 (공주대학교)
저널정보
한국지형학회 한국지형학회지 한국지형학회지 제23권 제4호
발행연도
2016.12
수록면
153 - 167 (15page)
DOI
http://dx.doi.org/10.16968/JKGA.23.4.153

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This research focuses on specifying and zoning the Jinbu area based on the potential risk of a landslide happening by developing different models. For this purpose, a landslide inventory map representing landslide locations has been produced through web based aerial photograph (offered by Daum corporation) interpretation and several field works. A total 210 landslides were detected at the study area. Seven landslide contributing factors including slope, aspect, curvature, geology, forest type, forest timber diameter, and soil texture were chosen as the factors that influence the slope stability over the Jinbu area. To reveal the relationship between the landslide causative factors and occurred landslides, factors distribution and the Frequency Ratio of all factors classes were calculated in GIS environment. Three modeling methods of Fuzzy, Bayesian analysis, and Logistic regression have been applied to create landslide susceptibility maps. Then, in order to verify the practicality and success rate of resultant models, they were evaluated by a cross validation technique. Based on the Success Rate Curve plotted for the models, the Bayesian predictive analysis with an 87.03% success rate, turned out to be the most precise model compared to the other models. Fuzzy model and Logistic regression resulted in 85.07% and 83.89% Success Rates respectively. However, the produced models were just slightly different and provide acceptable and reliable models that can be beneficial for risk assessment for land managers or planners.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0