메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Majid Rasouli (Bu-Ali Sina University) Mahdi Dini (Bu-Ali Sina University) Behnam Ataeiyan (University of Tehran)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제28권 제5호
발행연도
2023.10
수록면
140 - 150 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Anaerobic co-digestion of primary and secondary sewage sludge and Cladophora green algae was investigated under mesophilic temperature conditions. The design of experiment method and the optimal mixture design were used to systematically optimize the substrate composition ratios and elucidate the possible synergistic effects for an anaerobic digestion system. A reduced cubic model was created by Design-Expert software as a function of substrate composition ratios. The model was validated by ANOVA experimentally. Also, the substrate composition ratio’s effects on variations in biogas production were studied. All linear impacts on changes in biogas production were significantly observed, and interactions between substrates in combined digestion had synergistic impacts on biogas production rate. The highest amount of biogas (235.17-296.03 ml/g VS) was obtained with ratios of equal to 70-60%, B equal to 0-17%, and C equal to 18-30%. Eventually, the model optimization was performed to predict the optimal conditions to achieve the maximum biogas production rate. It was seen that the predicted and actual values of produced biogas in favorable conditions with an error of about 1.3% are well consistent. The authors conclude that the optimal mixture design can be utilized to assess the optimal composition of substrates in an anaerobic digestion system.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
References

참고문헌 (31)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-539-001331135