메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nazeer Abdul Azeez (Bannari Amman Institute of Technology) Udhayakumar Sreelakshmi (Bannari Amman Institute of Technology) Mani Saranpriya (Bannari Amman Institute of Technology) Dhanapal Mothilal (Bannari Amman Institute of Technology) Vijaykumar Sudarshana Deepa (Bannari Amman Institute of Technology)
저널정보
나노기술연구협의회 Nano Convergence Nano Convergence Vol.5 No.23
발행연도
2018.8
수록면
1 - 8 (8page)
DOI
10.1186/s40580-018-0155-0

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Surface modification of nanoparticles for biological applications is receiving enormous interest among the research community due to the ability to alchemy the toxic nanoparticles into biocompatible compounds. In this study, the agrowastes of Moringa oleifera and Coriandrum sativum were used to surface modify the magnesium oxide nanoparticles and ferric oxide nanoparticles respectively. The agrowaste amended magnesium oxide nano particles (AMNP) and agrowaste amended ferric oxide nanoparticles (AFNP) were characterized using scanning electron microscope, X-ray diffractometer, Fourier transformed-infra red spectroscope to justify the formation and surface modification of nanoparticles with the organic functional groups from the agro wastes. The surface modified nano particles were tested for their biocompatibility and ability to treat the chlorosis in Glycine max. On comparison between the two metal based nanoparticles, AMNP exhibited better chlorosis treating ability than the AFNP. Both the nano particles showed increased potency at minimal amount, 30 μg and the higher concentrations till 125 μg exhibited down run of the potency which was again enhanced from 250 μg of nanoparticle treatment to plants. Further the surface modified nanoparticles were assessed for biocompatibility on human embryonic kidney (HEK-293) cell line which proved that the cell lines are non-toxic to normal human cells. The size of the particles and the concentration is suggested to be responsible for the effective chlorosis treatment and the organic functional groups responsible for the reduction of toxicity of the particles to the plants.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0