메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ki-Pyeong Kim (Daejeon University Korea.) Seo-Won Song (eulji University)
저널정보
한국인공지능학회 인공지능연구 인공지능연구 제6권 제2호
발행연도
2018.12
수록면
23 - 27 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Korea has a high proportion of self-employment. Many of them start the food business since it does not require high-techs and it is possible to start the business relatively easily compared to many others in business categories. However, the closure rate of the business is also high due to excessive competition and market saturation. Cafes and restaurants are examples of food business where the business analysis is highly important. However, for most of the people who want to start their own business, it is difficult to conduct systematic business analysis such as trade area analysis or to find information for business analysis. Therefore, in this paper, we predicted business status with simple information using Microsoft Azure Machine Learning Studio program. Experimental results showed higher performance than the number of attributes, and it is expected that this artificial intelligence model will be helpful to those who are self-employed because it can easily predict the business status. The results showed that the overall accuracy was over 60 % and the performance was high compared to the number of attributes. If this model is used, those who prepare for self-employment who are not experts in the business analysis will be able to predict the business status of stores in Seoul with simple attributes.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0