메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이현섭 (백석대학교)
저널정보
중소기업융합학회 융합정보논문지 융합정보논문지 제11권 제11호
발행연도
2021.11
수록면
44 - 50 (7page)
DOI
https://doi.org/10.22156/CS4SMB.2021.11.11.044

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 빅데이터를 수용하기 위한 대용량 저장 장치가 필요한 엔터프라이즈 저장 시스템에서는 비용과 크기 대비 직접도가 높은 대용량의 플래시 메모리 기반 저장 장치를 많이 사용하고 있다. 본 논문에서는 엔터프라이즈 대용량 저장 장치의 신뢰도와 이용성에 직접적인 영향을 주는 플래시 메모리 미디어의 수명을 극대화 하기 위해 경사하강법을 적용한 고효율 수명 예측 방법을 제안한다. 이를 위해 본 논문에서는 불량 발생 빈도를 학습하기 위한 메타 데이터를 저장하는 매트릭스의 구조를 제안하고 메타데이터를 이용한 비용 모델을 제안한다. 또한 학습된 범위를 벗어난 불량이 발생 했을 때 예외 상황에서의 수명 예측 정책을 제안한다. 마지막으로 시뮬레이션을 통해 본 논문에서 제안하는 방법이 이전까지 플래시 메모리의 수명 예측을 위해 사용되어 온 고정 횟수 기반 수명 예측 방법과 예비 블록의 남은 비율을 기반으로 하는 수명 예측 방법 대비 수명을 극대화 할 수 있음을 증명하여 우수성을 확인했다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0