메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이장희 (포항공과대학교) 유재룡 (한국원자력의학원 국가방사선비상진료센터) 박민석 (한국원자력의학원) 김송현 (한국전력국제원자력대학원대학교)
저널정보
한국방사선산업학회 방사선산업학회지 방사선산업학회지 제15권 제4호
발행연도
2021.12
수록면
289 - 299 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An increase of frequencies occurring the internal exposure situations of radiationworkers is concerned due to the environmental change, which are the enlargement of usingradiation sources and the introduction of decommissioning of nuclear power reactor, of nuclearindustries in Korea. This paper aims at developing a system, which can be impossible for thepresent commercial codes, for internal dosimetry based on artificial intelligence capable forrapidly estimating and processing much measurement information into a bundle under theradiological emergency situations. For defining the assesment model using artificial intelligence,an automatic system for generating database for intake scenarios and input values applicable tothe artificial neural network learning has been constructed by applying with the recommendationof ICRP, OIR and IDEAS. The artificial neural networks have been classified with two model, thatis, the case of knowing intake time and unknowing it. And, architectures for these models havebeen constructed for assessing the committed effective dose, and committed effective dose andintake time, respectively. Loss functions for two models have converged and their over-fitting hasnot occurred, and a validity of the system for internal dosimery based on artificial intelligence hasbeen achieved. And, the validity of the program for internal dosimetry has been also performedby using learning results of the artificial neural network. The accuracy of R2 score is to be about0.998 and this system based on artificial intelligency can be then reliable for internal dosimetry.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0