메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서쌍희 (경남대학교)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제19권 제10호
발행연도
2021.10
수록면
295 - 301 (7page)
DOI
https://doi.org/10.14400/JDC.2021.19.10.295

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
개인의 정신적 피로는 인지능력 및 업무 수행능력을 감소시킬 뿐만 아니라 일상에서 발생하는 크고 작은 사고의 주요 요인이 된다. 본 논문에서는 EEG 기반의 정신적 피로 판별을 위한 CNN 모델을 제안하였다. 이를 위해 안정 상태와 작업 상태에서의 뇌파를 수집하여 제안한 CNN 모델에 적용한 후 모델 성능을 분석하였다. 실험에 참여한 피험자들은 모두 대학교에 재학 중인 오른손잡이 남학생들이며 평균 나이는 25.5세이다. 각 상태에서의 측정된 뇌파에 대해 스펙트럼분석을 수행하였으며, CNN 모델의 입력데이터로써 원시 EEG 신호, 절대파워, 상대파워를 사용하여 CNN모델의 성능을 비교 분석하였다. 그 결과, 알파대역 후두엽 위치의 상대파워가 가장 좋은 성능을 나타내었다. 모델정확도는 훈련데이터 85.6%, 검증데이터 78.5%, 시험데이터 95.7%이다. 제안한 모델은 정신적 피로 판별을 위한 자동화시스템 개발에 적용될 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0