메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
은성종 (정보통신산업진흥원 디지털헬스산업팀) 이준영 (정보통신산업진흥원 디지털헬스산업팀) 정한 (가천대학교) 김계환 (세종충남대학교병원)
저널정보
대한배뇨장애요실금학회 International Neurourology Journal International Neurourology Journal 제25권 제3호
발행연도
2021.9
수록면
229 - 235 (7page)
DOI
10.5213/inj.2142276.138

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: In this study, a urinary management system was established to collect and analyze urinary time and interval data detected through patient-worn smart bands, and the results of the analysis were shown through a web-based visualization to enable monitoring and appropriate feedback for urological patients. Methods: We designed a device that can recognize urination time and spacing based on patient-specific posture and consistent posture changes, and we built a urination patient management system based on this device. The order of body movements during urination was consistent in terms of time characteristics; therefore, sequential data were analyzed and urinary activity was recognized using repeated neural networks and long-term short-term memory systems. The results were implemented as a web (HTML5) service program, enabling visual support for clinical diagnostic assistance. Results: Experiments were conducted to evaluate the performance of the proposed recognition techniques. The effectiveness of smart band monitoring urination was evaluated in 30 men (average age, 28.73 years; range, 26?34 years) without urination problems. The entire experiment lasted a total of 3 days. The final accuracy of the algorithm was calculated based on urological clinical guidelines. This experiment showed a high average accuracy of 95.8%, demonstrating the soundness of the proposed algorithm. Conclusions: This urinary activity management system showed high accuracy and was applied in a clinical environment to characterize patients’ urinary patterns. As wearable devices are developed and generalized, algorithms capable of detecting certain sequential body motor patterns that reflect certain physiological behaviors can be a new methodology for studying human physiological behaviors. It is also thought that these systems will have a significant impact on diagnostic assistance for clinicians.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0