메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서길완 (건국대학교)
저널정보
한국영미어문학회 영미어문학 영미어문학 제125호
발행연도
2017.6
수록면
141 - 162 (22page)
DOI
http://dx.doi.org/10.21297/ballak.2017.125.141

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A theory model of trauma that has often been used as the definition of a catastrophic event as trauma by the visual media poses the danger of deepening the pain of trauma instead of being the solution to coping with it. This work aims to present a solution to this problematic situation. It intends to provide an alternative model of trauma for visual representation, based on the existing model of trauma. The frame for understanding the problem mentioned above adopts the mode of questionable representation of 9/11 by the US’s mainstream visual media. The study notes that the forms of representation of 9/11 by the visual media, such as excluding the images of people falling from the world trade center towers, is based on a dominant model of modern trauma theory called the dissociation model or transmission model. Based on this understanding, this work examines the problems and limitations of the representation of 9/11 by the US visual media, particularly the visualization of the incident following the principles of a dominant model of trauma theory. Jonathan Safran Foer’s Extremely Loud and Incredibly Close is one of the first novels that deals directly with the trauma of September 11 regarding the problems. It is Extremely Loud’s experimental form that exposes the complexity of trauma involving witnessing the terrible scene of 9/11. This paper utilizes the experimental form as a tool to reveal problems involving the dangers of the formulaic adoption of elements of a dominant trauma theory and as guidance for new alternatives for a visual representation of trauma.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0