메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박소연 (서울대학교) 안명환 (이화여자대학교) 이성뢰 (서울대학교) 김준우 (서울대학교) 전현균 (서울대학교) 김덕진 (서울대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제5호
발행연도
2021.10
수록면
1,475 - 1,490 (16page)
DOI
https://doi.org/10.7780/kjrs.2021.37.5.3.11

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
SAR 이미지의 통계적 특징을 이용하여 유류오염영역을 특정하는 방법은 분류규칙이 복잡하고 이상값에 의한 영향을 많이 받는다는 한계가 있어, 최근 인공신경망을 기반으로 유류오염영역을 특정하는 연구가 활발히 이루어지고 있다. 하지만, 다양한 유류오염 사례에 대해 모델의 탐지 성능 및 특성을 평가한 연구는 부족하였다. 따라서, 본 연구에서는 기본적인 구조의 CNN인 Simple CNN과 픽셀 단위의 영상 분할이 가능한 U-net 을 이용하여, CNN의 구조와, 유류오염의 분포특성에 따른 모델의 탐지성능차이가 존재하는지 분석하였다. 연구결과, 축소경로만 존재하는Simple CNN과 축소경로와 확장경로가 모두 존재하는U-net의 F1 score는 86.24% 와 91.44%로 나타나, 두 모델 모두 비교적 높은 탐지 정확도를 보여주었지만, U-net의 탐지성능이 더 높은 것으로 나타났다. 또한 다양한 유류오염 사례에 따른 모델의 성능 비교를 위해, 유류오염의 공간적 분포특성(유류오염 주변의 육지의 분포)과 선명도(유출된 기름과 해수의 경계면이 뚜렷한 정도)를 기준으로, 유류오염 발생사례를 4가지 유형으로 구분하여 탐지 정확도를 평가하였다. Simple CNN은 각각의 유형에 대해 F1 score가85.71%, 87.43%, 86.50%, 85.86% 로 유형별 최대 편차가 1.71%인 것으로 나타났으며, U-net은 동일한 지표에 대해 89.77%, 92.27%, 92.59%, 92.66%의 F1 score를 보여 최대 편차가 2.90% 로 두 CNN모델 모두 유류오염 분포특성에 따른 수치상 탐지성능의 차이는 크지 않은 것으로 나타났다. 하지만 모든 유류오염 유형에서 Simple CNN은 오염영역을 과대탐지 하는 경향을, U-net은 과소탐지 하는 경향을 보여, 모델의 구조와 유류오염의 유형에 따라 서로 다른 탐지 특성을 가진다는 것을 확인하였고, 이러한 특성은 유류오염과 해수의 경계면이 뚜렷하지 않은 경우 더 두드러지게 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0