메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김대원 (부산대학교) 김소현 (부산대학교) 조영헌 (부산대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제5호
발행연도
2021.10
수록면
1,307 - 1,315 (9page)
DOI
https://doi.org/10.7780/kjrs.2021.37.5.2.8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
매년 여름철 양자강에서 유출되는 저염분수는 동중국해 뿐만 아니라 제주도 주변 해역의 염분 변화에큰 영향을 미치며 때때로 그 영향은 한반도 연안에 국한되지 않고 대한해협을 통과하여 동해 외해 까지 확장되기도 한다. 한반도 주변으로 확장된 양자강 유출수는 해양 물리 및 생태학적으로 많은 영향을 끼치며 어업 및양식업에 큰 피해를 유발하기도 한다. 그러나 현장조사의 한계점 때문에 동중국해에서 확산되는 저염분수를지속적으로 관측하기에는 현실적으로 어려움이 있다. 이러한 이유로 양자강 유출수의 확산을 실시간으로 모니터링하기 위해 인공위성을 활용한 표층 염분 산출 연구가 많이 진행되어 왔다. 본 연구에서는 시간 및 공간해상도가 상대적으로 좋은 GOCI(Geostationary Ocean Color Imager)를 활용한 동중국해 표층 염분 산출 알고리즘을 개발하였다. 알고리즘 개발을 위해 기계학습 기법 중 하나인MPNN(Multilayer Perceptron Neural Network) 을 이용하였으며, 출력층에는 SMAP(Soil Moisture Active Passive) 위성의 표층 염분 자료를 활용하였다. 이전연구에서 2016년 자료를 이용한 표층 염분 산출 알고리즘이 개발되었으나 본 연구에서는 연구 기간을 2015년부터 2020년까지로 확장하여 알고리즘 성능을 개선하였다. 2011년부터 2019년까지 동중국해에서 관측된 국립수산과학원의 정선조사자료를 이용하여 알고리즘 성능을 검증한 결과로 R2는 0.61과 RMSE는 1.08 psu로 나타났다. 본 연구는 GOCI를 이용한 동중국해 표층 염분 모니터링 알고리즘 개발을 위해 수행되었으며, 향후GOCI-II의 표층 염분 산출 알고리즘 개발에 많은 기여를 할 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0