메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
민찬홍 (한국과학기술원) 정현태 (한국과학기술원) 양세정 (연세대학교) 신현정 (한국과학기술원)
저널정보
대한의용생체공학회 의공학회지 의공학회지 제42권 제5호
발행연도
2021.10
수록면
232 - 240 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Heterogeneity in cancer is the major obstacle for precision medicine and has become a critical issue in the field of a cancer diagnosis. Many attempts were made to disentangle the complexity by molecular clas- sification. However, multi-dimensional information from dynamic responses of cancer poses fundamental limita- tions on biomolecular marker-based conventional approaches. Cell morphology, which reflects the physiological state of the cell, can be used to track the temporal behavior of cancer cells conveniently. Here, we first present a hybrid learning-based platform that extracts cell morphology in a time-dependent manner using a deep con- volutional neural network to incorporate multivariate data. Feature selection from more than 200 morphological features is conducted, which filters out less significant variables to enhance interpretation. Our platform then per- forms unsupervised clustering to unveil dynamic behavior patterns hidden from a high-dimensional dataset. As a result, we visualize morphology state-space by two-dimensional embedding as well as representative morphology clusters and trajectories. This cell morphology profiling strategy by hybrid learning enables simplification of the heterogeneous population of cancer.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0