메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhigang Li (Nuclear Power Institute of China) Ping An (Nuclear Power Institute of China) Wenbo Zhao (Nuclear Power Institute of China) Wei Liu (Nuclear Power Institute of China) Tao He (Nuclear Power Institute of China) Wei Lu (Nuclear Power Institute of China) Qing Li (Nuclear Power Institute of China)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제11호
발행연도
2021.11
수록면
3,653 - 3,664 (12page)
DOI
https://doi.org/10.1016/j.net.2021.05.023

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's functionmethod and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindricalheat conduction transient model are used to calculate the coolant temperature and fuel temperature. TheLMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions areas follows: (1) core relative power and fuel Doppler temperature are in good agreement with the resultsof benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMWand NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent withthe results of SMART and ADPRES. And the core relative power is in better agreement with the SMARTwhen weighting coefficient is 0.7. Compared with SMART, the maximum deviation is 5.08% in the rodejection condition and while 5.09% in the control rod complex movement condition

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0