메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
곽명웅 (세종대학교) 정우식 (세종대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제9호
발행연도
2021.9
수록면
2,888 - 2,898 (11page)
DOI
https://doi.org/10.1016/j.net.2021.03.031

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Vital area identification (VAI) is an essential procedure for the design of physical protection systems(PPSs) for nuclear power plants (NPPs). The purpose of PPS design is to protect vital areas. VAI has beenimproved continuously to overcome the shortcomings of previous VAI generations. In first-generationVAI, a sabotage fault tree was developed directly without reusing probabilistic safety assessment (PSA)results or information. In second-generation VAI, VAI model was constructed from all PSA event treesand fault trees. While in third-generation VAI, it was developed from the simplified PSA event trees andfault trees. While VAIs have been performed for NPPs in full-power operations, VAI for NPPs in low-power andshutdown (LPSD) operations has not been studied and performed, even though NPPs in LPSD operationsare very vulnerable to sabotage due to the very crowded nature of NPP maintenance. This study is thefirst to research and apply VAI to LPSD operation of NPP. Here, the third-generation VAI method for fullpoweroperation of NPP was adapted to the VAI of LPSD operation. In this study, LPSD VAI for a few plant operational states (POSs) was performed. Furthermore, theoperation strategy of vital areas for both full-power and LPSD operations was discussed. The LPSD VAImethod discussed in this paper can be easily applied to all POSs. The method and insights in this studycan be important for future LPSD VAI that reflects various LPSD operational states. Regulatory bodies andelectric utilities can take advantage of this LPSD VAI method

목차

등록된 정보가 없습니다.

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0