메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ernestas Narkunas (Nuclear Engineering Laboratory, Lithuanian Energy Institute) Arturas Smaizy (Nuclear Engineering Laboratory, Lithuanian Energy Institute) Povilas Poskas (Nuclear Engineering Laboratory, Lithuanian Energy Institute) Valerij Naumov (SE Ignalina Nuclear Power Plant) Dmitrij Ekaterinichev (SE Ignalina Nuclear Power Plant)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제6호
발행연도
2021.6
수록면
1,869 - 1,877 (9page)
DOI
https://doi.org/10.1016/j.net.2020.11.022

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents the neutron dose rate analysis of the new CONSTOR® RBMK-1500/M2 storage caskintended for the spent nuclear fuel storage at Ignalina Nuclear Power Plant in Lithuania. These casks aredesigned to be stored in a new “closed” type interim storage facility, with the capacity to store up to 202CONSTOR® RBMK-1500/M2 casks. In 2016 y, the “hot trials” of this new facility were conducted and 10CONSTOR® RBMK-1500/M2 casks loaded with the spent nuclear fuel were transported to the dedicatedstorage places in this facility. During “hot trials”, the dose rate measurements of the CONSTOR® RBMK-1500/M2 casks were performed as the dose rate is one of the critical parameter to control and it must bebelow design (and safety) criteria. Therefore, having the actual data of the spent nuclear fuel characteristics,the neutron dose rate modeling of the CONSTOR® RBMK-1500/M2 cask loaded with thisparticular fuel was also performed. Neutron dose rate modeling was performed using MCNP 5 computercode with very detailed geometrical representation of the cask and the fuel. The obtained modelingresults were compared with the measurement results and it was revealed, that modeling results aregenerally in good agreement with the measurements

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0