메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤훈 (KEPCO E&C) 문승재 (한양대학교) 오영진 (한국전력기술 (주))
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제52권 제9호
발행연도
2020.9
수록면
2,119 - 2,129 (11page)
DOI
https://doi.org/10.1016/j.net.2020.03.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Flow-accelerated corrosion (FAC), liquid droplet impingement erosion (LDIE), cavitation and ?ashing can cause continuous wall-thinning in nuclear secondary pipes. In order to prevent pipe rupture events resulting from the wall-thinning, most NPPs (nuclear power plants) implement their management programs, which include periodic thickness inspection using UT (ultrasonic test). Meanwhile, it is well known in ?eld experiences that the thickness measurement errors (or deviations) are often comparable with the amount of thickness reduction. Because of these errors, it is dif?cult to estimate wall-thinning exactly whether the signi?cant thinning has occurred in the inspected components or not. In the pre- vious study, the authors presented an approximate estimation procedure as the ?rst step for thickness measurement deviations at each inspected component and the statistical & quantitative characteristics of the measurement deviations using plant experience data. In this study, statistical signi?cance was quanti?ed for the current methods used for wall-thinning determination. Also, the authors proposed new estimation procedures for determining local wall-thinning to overcome the weakness of the current methods, in which the proposed procedure is based on analysis of variance (ANOVA) method using sub- grouping of measured thinning values at all measurement grids. The new procedures were also quan- ti?ed for their statistical signi?cance. As the results, it is con?rmed that the new methods have better estimation con?dence than the methods having used until now

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0