메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최지원 (한양대학교) 김경배 (동아대학교) 이훈 (한양대학교)
저널정보
한국관광학회 관광학연구 관광학연구 제45권 제6호
발행연도
2021.9
수록면
9 - 36 (28page)
DOI
http://dx.doi.org/10.17086/JTS.2021.45.6.9.36

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Social media has become a place where travelers express their emotions and record travel experiences. However, there has been little research on sharing travel experiences on social media and happiness. The purpose of this study is to understand why people share travel experiences on social media and is to propose a conceptual framework of the relationship between sharing travel experiences on social media and happiness. A systematic quantitative literature review method was applied to explore research trends in sharing travel experiences on social media. Specifically, from the SCOPUS database, a total of 120 articles were extracted followed by the PRISMA checklist. Then, they were coded with several categories, such as publication, keywords, the research contexts, and variables, and were finally exported to a Microsoft Excel spreadsheet and analyzed. Results of the systematic qualitative litterateur review suggest that sharing travel experiences on social media positively influences travel satisfaction and enhances travelers’ self-esteem and happiness. Theoretically, this study developed a new theoretical framework on the relationship between sharing travel experience on social media and happiness. In particular, the framework indicates that even though individuals motivation of sharing travel expediences are different, they may experiences either Hedonia or Eudaimonia by doing so. Results of this study also imply that social media could make practical functions such as advertising travel destination and monitoring current and potential travelers' behaviors.

목차

등록된 정보가 없습니다.

참고문헌 (116)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0