메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
손세림 (고려대학교) 문혜미 (고려대학교) An Hyonggin (Department of Biostatistics Korea University College of Medicine Seoul Korea)
저널정보
한국역학회 Epidemiology and Health Epidemiology and Health Vol.44
발행연도
2022.1
수록면
1 - 9 (9page)
DOI
10.4178/epih.e2022096

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
OBJECTIVES: The Korea National Health and Nutrition Examination Survey (KNHANES) is a public health survey that as sesses individuals’ health and nutritional status and monitors the prevalence of major chronic diseases. In general, sampling weights are adjusted for unit non-responses and imputation is conducted for item non-responses. In this study, we proposed strategies for imputing item non-responses in the KNHANES in order to improve the usefulness of data, minimize bias, and in crease statistical power. METHODS: After applying logical imputation, we adopted 2 separate imputation methods for each variable type: unweighted sequential hot-deck imputation for categorical variables and sequential regression imputation for continuous variables. For variance estimation, multiple imputations were applied to the continuous variables. To evaluate the performance of the pro posed strategies, we compared the marginal distributions of imputed variables and the results of multivariable regression analy sis for the complete-case data and the expanded data with imputed values, respectively. RESULTS: When comparing the marginal distributions, most non-responses were imputed. The multivariable regression coeffi cients presented similar estimates; however, the standard errors decreased, resulting in statistically significant p-values. The pro posed imputation strategies may cope with the loss of precision due to missing data, thus enhancing statistical power in analyses of the KNHANES by providing expanded data with imputed values. CONCLUSIONS: The proposed imputation strategy may enhance the utility of data by increasing the number of complete cases and reducing the bias in the analysis, thus laying a foundation to cope with the occurrence of item non-responses in further sur veys

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0