메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김수경 (서울아산병원) 성흥섭 (울산대학교) 황상현 (울산대학교) 김미나 (울산대학교)
저널정보
한국바이오칩학회 BioChip Journal BioChip Journal Vol.16 No.2
발행연도
2022.6
수록면
175 - 182 (8page)
DOI
10.1007/s13206-022-00053-4

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Rapid and accurate diagnosis of influenza is crucial to contain influenza virus outbreaks. In clinical settings, lateral flow immunoassays (LFIAs) are widely used for rapid influenza antigen detection. The choice of label plays an important role in determining the sensitivity of the LFIA. Quantum dots are one of the most promising fluorescent reporters. Here, we evaluated a novel quantum dot-based assay, QuantumPACK Easy Influenza A + B (QuantumPACK Easy; BioSquare Inc., Korea). A total of 394 nasopharyngeal swab samples, including 94 influenza A virus-positive, 98 influenza B virus-positive, 175 influenza A and B virus-negative, and 27 other respiratory pathogen-positive samples, were collected. Samples were tested with QuantumPACK Easy, Allplex RP real-time RT-PCR assay (Allplex RP; Seegene, Korea), and Sofia Influenza A + B FIA (Sofia; Quidel, CA, USA). The sensitivity and specificity of QuantumPACK Easy was analyzed using the Allplex RP assay. The agreement between QuantumPACK Easy and Sofia assays was also analyzed. The sensitivity of QuantumPACK Easy for influenza A and B was 80.9% and 83.7%, respectively. The specificity of QuantumPACK Easy was 100%. Crossreactivity with other respiratory pathogens was not observed. Total agreement between QuantumPACK Easy and Sofia was 89.6% (kappa 0.783). The sensitivity of the Sofia assay was 66.0% for influenza A virus and 61.2% for influenza B virus. QuantumPACK Easy had acceptable performance, with better sensitivity than a commercially available antigen detection assay, possibly due to the characteristics of the quantum dot.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0