메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
피수영 (대구가톨릭대학교) 이정아 (대구가톨릭대학교) 양재혁 (테그주식회사 대표)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제20권 제3호
발행연도
2022.3
수록면
333 - 341 (9page)
DOI
https://doi.org/10.14400/JDC.2022.20.3.333

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Despite rapidly increasing demand for fishing, there is a lack of studies and information related to fishing, and there is a limit to obtaining the data on the global distribution of fish resources. Since the existing method of investigating fish resource distribution is designed to collect the fish resource information by visiting the investigation area using a throwing net, it is almost impossible to collect nation-wide data, such as streams, rivers, and seas. In addition, the existing method of measuring the length of fish used a tape measure, but in this study, a FishingTAG's smart measure was developed. When recording a picture using a FishingTAG's smart measure, the length of the fish and the environmental data when the fish was caught are automatically collected, and there is no need to carry a tape measure, so the user's convenience can be increased. With the development of a global fishing application using a FishingTAG’s smart measure, first, it is possible to collect fish resource samples in a wide area around the world continuously on a real time basis. Second, it is possible to reduce the enormous cost for collecting fish resource data and to monitor the distribution and expansion of the alien fish species disturbing the ecosystem. Third, by visualizing global fish resource information through the Google Maps, users can obtain the information on fish resources according to their location. Since it provides the fish resource data collected on a real time basis, it is expected to of great help to various studies and the establishment of policies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0