메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ara Cho (Chonnam National University Hospital) Luu-Ngoc Do (Chonnam National University) Seul Kee Kim (Chonnam National University) Woong Yoon (Chonnam National University Hospital) Byung Hyun Baek (Chonnam National University Hospital) 박일우 (전남대학교)
저널정보
대한자기공명의과학회 Investigative Magnetic Resonance Imaging Investigative Magnetic Resonance Imaging 제26권 제4호
발행연도
2022.12
수록면
191 - 199 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Timely analysis of imaging data is critical for diagnosis and decision-making for proper treatment strategy in the cases of ischemic stroke. Various efforts have been made to de velop computer-assisted systems to improve the accuracy of stroke diagnosis and acute stroke triage. The widespread emergence of artificial intelligence technology has been integrated into the field of medicine. Artificial intelligence can play an important role in providing care to patients with stroke. In the past few decades, numerous studies have explored the use of machine learning and deep learning algorithms for application in the management of stroke. In this review, we will start with a brief introduction to ma chine learning and deep learning and provide clinical applications of machine learning and deep learning in various aspects of stroke management, including rapid diagnosis and improved triage, identifying large vessel occlusion, predicting time from stroke on set, automated ASPECTS (Alberta Stroke Program Early CT Score) measurement, lesion segmentation, and predicting treatment outcome. This work is focused on providing the current application of artificial intelligence techniques in the imaging of ischemic stroke, including MRI and CT.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0