메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Meejung Kim (가톨릭대학교) 강봉주 (가톨릭대학교) Ga Eun Park (가톨릭대학교)
저널정보
대한자기공명의과학회 Investigative Magnetic Resonance Imaging Investigative Magnetic Resonance Imaging 제26권 제2호
발행연도
2022.7
수록면
135 - 149 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: To assess clinically significant imaging findings of malignant intra mammary lymph nodes (IMLNs) in breast cancer patients and to evaluate their diagnostic performance in predicting malignant IMLN. Materials and Methods: A total of 110 cases with IMLN of BI-RADS category 3 or more, not typical benign IMLN, in MR of breast cancer patients between January 2016 and January 2021 were retrospectively reviewed. After excluding 33 cases, 77 cases were finally included. Among them, 58 and 19 were confirmed as benign and malignant, respectively. Qualitative and quantitative MR imaging features of the IMLN were retrospectively analyzed. Sizes and final assessment categories of IMLN on MRI, mammography, and ultrasound were reviewed. Diagnostic performances of imaging features on MRI, mammography, and ultrasound were then evaluated. Results: For qualitative MR features, shape, margin, and preserved central hilum were significantly different between benign and malignant groups (P < 0.05). For quantitative MR features, long diameter over 6 mm, short diameter over 4 mm, and cortical thickening over 3 mm showed high sensitivities in predicting malignant IMLNs (89.5%, 94.7%, and 100%, respectively). Size exceeding 1 cm showed high specificity and accuracy in predicting malignant IMLN on MR, mammography, and ultrasound (91.4% and 80.5%; 96.6% and 79.25; 98.3% and 80.5%, respectively). Conclusion: Various MR imaging features and size can be helpful for predicting malignant IMLN in breast cancer patients.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0