메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lan Li (Branch of National Clinical Research Center for Orthopedics Drum Tower Hospital Affiliated to Medic) Peng Wang (Nanjing University) Jing Jin (Branch of National Clinical Research Center for Orthopedics Drum Tower Hospital Affiliated to Medic) Chunmei Xie (Hangzhou Lancet Robotics Company Ltd Hangzhou 310000 China.) Bin Xue (Nanjing University Nanjing 210093 China.) Jiancheng Lai (Stanford University Stanford CA 94305-6104 USA.) Liya Zhu (Nanjing Normal University No.1 Wenyuan Road Nanjing 210023 China.) Qing Jiang (Branch of National Clinical Research Center for Orthopedics Drum Tower Hospital Affiliated to Medic)
저널정보
한국생체재료학회 생체재료학회지 생체재료학회지 제26권 제4호
발행연도
2022.12
수록면
885 - 901 (17page)
DOI
https://doi.org/10.1186/s40824-022-00293-3

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The meniscus injury is a common disease in the area of sports medicine. The main treatment for this disease is the pain relief, rather than the meniscal function recovery. It may lead to a poor prognosis and accelerate the progression of osteoarthritis. In this study, we designed a meniscal scaffold to achieve the purposes of meniscal function recovery and cartilage protection. Methods: The meniscal scaffold was designed using the triply periodic minimal surface (TPMS) method. The scaffold was simulated as a three-dimensional (3D) intact knee model using a finite element analysis software to obtain the results of different mechanical tests. The mechanical properties were gained through the universal machine. Finally, an in vivo model was established to evaluate the effects of the TPMS-based meniscal scaffold on the cartilage protection. The radiography and histological examinations were performed to assess the cartilage and bony structures. Different regions of the regenerated meniscus were tested using the universal machine to assess the biomechanical functions. Results: The TPMS-based meniscal scaffold with a larger volume fraction and a longer functional periodicity demon strated a better mechanical performance, and the load transmission and stress distribution were closer to the native biomechanical environment. The radiographic images and histological results of the TPMS group exhibited a better performance in terms of cartilage protection than the grid group. The regenerated meniscus in the TPMS group also had similar mechanical properties to the native meniscus. Conclusion: The TPMS method can affect the mechanical properties by adjusting the volume fraction and functional periodicity. The TPMS-based meniscal scaffold showed appropriate features for meniscal regeneration and cartilage protection.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0