메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Seon Yeong Chae (Pusan National University) Rowoon Park (Pusan National University) 홍석원 (부산대학교)
저널정보
한국생체재료학회 생체재료학회지 생체재료학회지 제26권 제3호
발행연도
2022.9
수록면
544 - 561 (18page)
DOI
https://doi.org/10.1186/s40824-022-00276-4

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Astaxanthin (AST) is known as a powerful antioxidant that affects the removal of active oxygen and inhibits the production of lipid peroxide caused by ultraviolet light. However, it is easily decomposed by heat or light during production and storage because of the unsaturated compound nature with a structural double bond. The activity of AST can be reduced and lose its antioxidant capability. Graphene oxide (GO) is an ultrathin nanomaterial produced by oxidizing layered graphite. The chemical combination of AST with GO can improve the dispersion prop erties to maintain structural stability and antioxidant activity because of the tightly bonded functionalized GO surface. Methods: Layered GO films were used as nanocarriers for the AST molecule, which was produced via flow-enabled self-assembly and subsequent controlled solution deposition of RGD peptide and AST molecules. Synthesis of the GO-AST complex was also carried out for the optimized concentration. The characterization of prepared materials was analyzed through transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), atomic force microscope (AFM), and Raman spectroscopy. Antioxidant activity was tested by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2.2-diphenyl-1-picrylhydrazyl (DPPH) assays. The antibacterial effect and antioxidant effects were monitored for the ultrathin GO/RGD/AST Film. Further, reactive oxygen species (ROS) assay was used to evaluate the anti-inflammatory effects on L-929 fibroblasts. Results: Cotreatment of GO-AST solution demonstrated a high antioxidant combined effect with a high ABTS and DPPH radicals scavenging activity. The GO/RGD/AST film was produced by the self-assembly process exhibited excel lent antibacterial effects based on physicochemical damage against E. coli and S. aureus. In addition, the GO/RGD/AST film inhibited H2O2-induced intracellular ROS, suppressed the toxicity of lipopolysaccharide (LPS)-induced cells, and restored it, thereby exhibiting strong antioxidant and anti-inflammatory effects. Conclusion: As GO nanocarrier-assisted AST exerted promising antioxidant and antibacterial reactions, presented a new concept to expand basic research into the field of tissue engineering.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0