메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
함석우 (공주대학교(천안공과대학)) 지승민 (공주대학교) 전성식 (공주대학교)
저널정보
한국복합재료학회 Composites Research Composites Research 제35권 제5호
발행연도
2022.11
수록면
317 - 321 (5page)
DOI
10.7234/composres.2022.35.5.317

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 머신 러닝을 통해 하중 유형에 따른 구간을 나누어 각 하중 유형에 강한 적층 각도 순서가 배치되는 PIC 설계 방법이 범퍼 빔에 적용되었다. 머신 러닝을 적용하기 위한 학습 데이터의 입력 값과 라벨은 각각 전체 요소 중 일부인 참조 요소의 좌표와 하중 유형으로 정의되었다. 좌표 값을 나타내는 방법인 2D 표현 방법과 3D 표현 방법을 비교하기 위하여 각각의 방법으로 학습 데이터 생성 및 머신 러닝 모델이 학습되었다. 2D 표현 방법은 유한요소 모델을 각 면으로 나누고 그에 따른 학습 데이터 생성 및 머신 러닝 모델을 학습시키는 방법이며, 3D 표현 방법은 유한요소 모델 전체에서 학습 데이터를 생성하여 하나의 머신 러닝 모델을 학습시키는 방법이다. 머신 러닝 모델의 성능에 영향을 미치는 하이퍼파라미터는 베이지안 알고리즘을 통해 최적 값으로 튜닝 되었으며, 튜닝 된 모델 중 k-NN 분류 방법이 가장 높은 예측률과 AUC-ROC로 나타났다. 그리고 2D 표현 방법과 3D 표현 방법 중 3D 표현 방법이 더 높은 성능을 보였다. 튜닝 된 머신 러닝 모델을 통해 예측된 하중 유형 데이터가 유한요소 모델에 매핑되었으며, 유한요소 해석을 통해 비교 검증되었다. 3D 표현 방법의 머신 러닝 모델로 설계된 PIC 방법이 강도 측면에서 더 우수함이 검증되었다

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0