메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
구동준 (경북대학교) 이아라 (경북대학교) 이은주 (경북대학교) 김일곤 (경북대학교)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제28권 제3호
발행연도
2022.7
수록면
231 - 239 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: This paper aimed to use machine learning to identify a new group of factors predicting frailty in the elderlypopulation by utilizing the existing frailty criteria as a basis, as well as to validate the obtained results. Methods: This studywas conducted using data from the Korean Frailty and Aging Cohort Study (KFACS). The KFACS participants were classifiedas robust or frail based on Fried’s frailty phenotype and excluded if they did not properly answer the questions, resulting in1,066 robust and 165 frail participants. We then selected influential features through feature selection and trained the modelusing support vector machine, random forest, and gradient boosting algorithms with the prepared dataset. Due to the imbalanceddistribution in the dataset with a low sample size, holdout was applied with stratified 10-fold and cross-validationfor estimating the model performance. The reliability of the constructed model was validated using an unseen test set. Themodel was then trained with hyperparameter optimization. Results: During the feature selection process, 27 features wereidentified as meaningful factors for frailty. The model was trained based on the selected features, and the weighted averageF1-score reached 95.30% with the random forest algorithm. Conclusions: The results of the study demonstrated the possibilityof adopting machine learning to strengthen existing frailty criteria. As the method analyzes questionnaire responses in ashort time, it can support higher volumes of data on participants’ health conditions and alert them regarding potential risksin advance.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0