메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jung‑Hyun Park (Korea Institute of Industrial Technology) Gyung Bae Bang (Korea Institute of Industrial Technology) Kee‑Ahn Lee (Inha University) Yong Son (Korea Institute of Industrial Technology) Yeong Hwan Song (Korea Institute of Industrial Technology) Byoung‑Soo Lee (Korea Institute of Industrial Technology) Won Rae Kim (Korea Institute of Industrial Technology) Hyung Giun Kim (Korea Institute of Industrial Technology)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.28 No.11
발행연도
2022.11
수록면
2,836 - 2,848 (13page)
DOI
10.1007/s12540-022-01169-w

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Various studies related to additive manufacturing (AM) have been conducted with Ni-based superalloy and multiscaleinvestigations of widely used Inconel 718 superalloy have been actively performed with the selective laser melting (SLM)method. The formation of defects and thermal residual stress during the SLM process could particularly affect productquality and life-time. Thus, to optimize the SLM process condition for Inconel 718 boasting the minimum of deterioratingproperties, the microstructural study was conducted with various energy densities and preheating temperatures. The SLMprocess condition over 99.9% of density was established and the change of microstructural and mechanical characteristicswere confirmed according to the preheating temperature from 50 to 150 °C. The fraction of the low angle grain boundary(LAGB) and the stored strain energy per unit volume gradually decreased as the preheating temperature increased. In particular,while maintaining the mechanical properties, the thermal residual stress in the direction perpendicular to the buildingdirection decreased under the half value of yield strength which could induce deformation.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0