메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김형진 (인하대학교) 김광식 (인하대학교) 황세윤 (인하대학교 산업과학기술연구소) 이장현 (인하대학교)
저널정보
한국항해항만학회 한국항해항만학회지 한국항해항만학회지 제46권 제4호
발행연도
2022.8
수록면
367 - 374 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 자율운항 선박의 연료 계통 펌프와 청정기를 대상으로 고장을 진단 사례를 제시하였다. 계측된 신호의 시간종속성을 반영한 심층학습(Deep learning) 알고리즘 적용 절차를 구성하고, 장비의 정상 운전상태와 고장 상태에서 계측한 진동 신호를 고장 패턴 학습에 사용하였다. 특히, 진동 신호에 내포된 열화의 시간 종속성을 반영할 수 있는 방법을 찾고자 하였으며, 슬라이딩 윈도우 연산 과정을 가진 Conv1D를 이용하여 고장의 시간 종속성을 반영하였다. 또한 계측된 신호의 차수를 2차원에서 3차원으로 확장하여 시간 영역의 특징을 반영할 수 있는 데이터 전처리과정을 고안하였다. Conv1D 알고리즘의 적층과 변수를 결정하는 과정에서 그리드 탐색 기법을 사용하여 초매개변수의 최적 값을 결정하였다. 마지막으로 제안한 데이터 전처리 방법과 시계열 데이터의 시간 종속성을 반영한 Conv1D 모델이 이상 감지 및 고장 진단에 타당성이 있음을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0