메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신대운 (한국해양대학교) 양찬수 (한국해양과학기술원) 하룬 알 러쉬드 아메드 (Korea Institute of Ocean Science & Technology)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제38권 제1호
발행연도
2022.2
수록면
73 - 82 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Marine fisheries resources face major anthropogenic threat from unregulated fishing activities; thus require precise detection for protection through marine surveillance. Korea developed an efficient land-based small fishing vessel monitoring system using real-time V-Pass data. However, those data directly do not provide information on fishing activities, thus further efforts are necessary to differentiate their activity status. In Korea, especially in Busan, longlining is practiced by many small fishing vessels to catch several types of fishes that need to be identified for proper monitoring. Therefore, in this study we have improved the existing fishing status classification method by applying Hidden Markov Model (HMM) on V-Pass data in order to further classify their fishing status into three groups, viz. non-fishing, longlining and other types of fishing. Data from 206 fishing vessels at Busan on 05 February, 2021 were used for this purpose. Two tiered HMM was applied that first differentiates non-fishing status from the fishing status, and finally classifies that fishing status into longlining and other types of fishing. Data from 193 and 13 ships were used as training and test datasets, respectively. Using this model 90.45% accuracy in classifying into fishing and non-fishing status and 88.23% overall accuracy in classifying all into three types of fishing statuses were achieved. Thus, this method is recommended for monitoring the activities of small fishing vessels equipped with V-Pass, especially for detecting longlining.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0