메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
배준형 (성균관대학교)
저널정보
한국인사조직학회 인사조직연구 인사조직연구 제30권 제4호
발행연도
2022.11
수록면
33 - 62 (30page)
DOI
http://dx.doi.org/10.26856/kjom.2022.30.4.33

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Prior studies on R&D alliances have assumed that technological complementarity is a subset of or a moderate level of technological similarity. This study suggests that technological similarity and complementarity are two distinct concepts and affect firms’ decision-making in R&D alliance formation differently. While firms conduct local searches to identify alliance partners that possess similar areas of technological knowledge, they also conduct relatively distant searches to identify alliance partners with complementary areas of knowledge. As such, R&D alliances focusing on technological similarity bear low project-specific uncertainty regarding the outcome of an alliance, whereas those driven by technological complementarity involve high project-specific uncertainty. Based on this observation, we investigate the impact of technological similarity and complementarity on the likelihood of R&D alliance formation between established pharmaceutical companies and biotechnology ventures within the biopharmaceutical industry. We find that while technological similarity is positively associated with the formation of late-stage R&D alliances, technological complementarity is positively associated with early-stage R&D alliance formation. We also find that in the presence of high uncertainty regarding an established pharmaceutical firm’s future performance, the positive effect of technological similarity on the likelihood of R&D alliance formation is amplified. However, the positive effect of technological complementarity on the likelihood of R&D alliance formation is diminished.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0