메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Abhijit Banerjee (University of Kalyani) Tania Biswas (University of Kalyani) Sayantan Maity (University of Kalyani)
저널정보
대한수학회 대한수학회보 대한수학회보 제59권 제5호
발행연도
2022.9
수록면
1,145 - 1,166 (22page)
DOI
10.4134/BKMS.b210637

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, for a transcendental meromorphic function $f$ and $a\in \mathbb{C}$, we have exhaustively studied the nature and form of solutions of a new type of non-linear differential equation of the following form which has never been investigated earlier: \[f^n+af^{n-2}f'+ P_d(z,f) = \sum_{i=1}^{k}p_i(z)e^{\alpha_i(z)}, \] where $P_d(z,f)$ is a differential polynomial of $f$, $p_i$'s and $\alpha_{i}$'s are non-vanishing rational functions and non-constant polynomials, respectively. When $a=0$, we have pointed out a major lacuna in a recent result of Xue \cite{xue_math slovaca20} and rectifying the result, presented the corrected form of the same equation at a large extent. In addition, our main result is also an improvement of a recent result of Chen-Lian \cite{chen lian_BKMS20} by rectifying a gap in the proof of the theorem of the same paper. The case $a\neq 0$ has also been manipulated to determine the form of the solutions. We also illustrate a handful number of examples for showing the accuracy of our results.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0