메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yanling Peng (Suzhou University of Science and Technology) Hong Wang (University of Idaho)
저널정보
대한수학회 대한수학회보 대한수학회보 제59권 제2호
발행연도
2022.3
수록면
345 - 350 (6page)
DOI
10.4134/BKMS.b210147

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this work, we confirm a weak version of a conjecture proposed by Hong Wang. The ideal of the work comes from the tree packing conjecture made by Gy\'arf\'as and Lehel. Bollob\'as confirms the tree packing conjecture for many small tree, who showed that one can pack $T_1,T_2,\ldots,T_{n/\sqrt{2}}$ into $K_n$ and that a better bound would follow from a famous conjecture of Erd\H{o}s. In a similar direction, Hobbs, Bourgeois and Kasiraj made the following conjecture: Any sequence of trees $T_1,T_2,\ldots,T_n$, with $T_i$ having order $i$, can be packed into $K_{n-1,\lceil n/2\rceil}$. Further Hobbs, Bourgeois and Kasiraj \cite{3} proved that any two trees can be packed into a complete bipartite graph $K_{n-1,\lceil n/2\rceil}$. Motivated by the result, Hong Wang propose the conjecture: For each $k$-partite tree $T(\mathbb{X})$ of order $n$, there is a restrained packing of two copies of $T(\mathbb{X})$ into a complete $k$-partite graph $B_{n+m}(\mathbb{Y})$, where $m=\lfloor\frac{k}{2}\rfloor$. Hong Wong \cite{4} confirmed this conjecture for $k=2$. In this paper, we prove a weak version of this conjecture.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0