메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sung-Soo Kim (Kangwon National University) Bum-Su Kang (Dongkuk Systems)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.22 No.1
발행연도
2023.3
수록면
63 - 72 (10page)
DOI
10.7232/iems.2023.22.1.063

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Initial solution selection is an important process in determining an optimal solution for the efficient classification of clustering methods in machine learning. This study proposes an improved initialization method for a simple and fast Kmedoids clustering algorithm, considering not only the sum of the relative distance rates for each data point, but also the distance between the previously selected medoids (representative objects). Selection of the balanced initial medoids causes the dissimilarity of patterns in the same cluster to be small and the dissimilarity of patterns in different clusters to be large. The performance of the proposed method is verified and validated based on two valid indices of clustering solutions by employing seven machine learning repository datasets of prominent applications with large improvements. The Mann–Whitney test is employed to assess the statistical significance of the performance differences between the method proposed by Park and Jun (2009) and the initialization method for clustering proposed here. The proposed initial selection method is effective, highly reliable, and computationally practical even for large problems.

목차

ABSTRACT
1. INTRODUCTION
2. DATA-CLUSTERING EVALUATION MODEL
3. INITIAL SOLUTION SELECTION FOR CLUSTERING
4. EXPERIMENTAL ANALYSIS, RESULTS, AND DISCUSSION
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-001330784