메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jiaolong Ren (Shandong University of Technology) Meng Wang (Shandong University of Technology) Lin Zhang (Shandong University of Technology) Zedong Zhao (Shandong University of Technology) Jian Wang (Shandong University of Technology) Jingchun Chen (Shandong University of Technology) Hongbo Zhao (Shandong University of Technology)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.17 No.2
발행연도
2023.3
수록면
201 - 215 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In pavement engineering, cement grouting material is widely used to pour into large void asphalt concrete to prepare semi-flexible composite mixtures. It plays an essential role in the performance of the semi-flexible composite mixture. To meet specific engineering requirements, various additives are mixed into the grouting material to improve the physical and mechanical properties. As a result, the uncertainty of the grouting material is also more significant as the complexity of material composition increases during the material design. It will bring some unknown risks for the engineering application. Hence, it is necessary to quantize the uncertainty during the material design of the grouting material and evaluate the reliability of the material formula. In this study, a novel framework of material design was developed by combing the Multioutput support vector machine (MSVM), Bayesian inference, and laboratory experiments. The MSVM was used to approximate and characterize the complex and nonlinear relationship between the grouting material formula and its properties based on laboratory experiments. The Bayesian inference was adopted to deal with the uncertainty of material design using the Markov Chain Monte Carlo. An optimized formula of the cement grouting material is obtained based on the developed framework. Experimental results show that the optimized formula improves engineering properties and performance stability, especially early strength. The developed framework provides a helpful, valuable, and promising tool for evaluating the reliability of the material design of the grouting material considering the uncertainty.

목차

Abstract
1 Introduction
2 Materials and Methods
3 Laboratory Experiment
4 Uncertainty Analysis of Material Design
5 Summary and Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-532-000441846