메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Joonmo Kim (Dankook University) Jaewon Oh (Catholic University of Korea) Minkwon Kim (Catholic University of Korea) Yeonsoo Kim (Catholic University of Korea) Jeongeun Lee (Catholic University of Korea) Sohee Han (Catholic University of Korea) Byungyeon Hwang (Catholic University of Korea)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.17 No.4
발행연도
2019.12
수록면
246 - 254 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a solution to the problem of finding a subgraph for a given instance of many terminals on a Euclidean plane. The subgraph is a tree, whose nodes represent the chosen terminals from the problem instance, and whose edges are line segments that connect two corresponding terminals. The tree is required to have the maximum number of nodes while the length is limited and is not sufficient to interconnect all the given terminals. The problem is shown to be NP-hard, and therefore a genetic algorithm is designed as an efficient practical approach. The method is suitable to various probable applications in layout optimization in areas such as communication network construction, industrial construction, and a variety of machine and electronics design problems. The proposed heuristic can be used as a general-purpose practical solver to reduce industrial costs by determining feasible interconnections among many types of components over different types of physical planes.

목차

Abstract
I. INTRODUCTION
II. NP-HARDNESS OF A SUBGRAPH
III. MAXIMUM NUMBER OF NODE INTERCONNECTIONS BY A GENETIC ALGORITHM
IV. EXPERIMENT
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000405769