메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Bong-Hyun Back (Yeungnam University) Il-Kyu Ha (Kyungil University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.17 No.4
발행연도
2019.12
수록면
239 - 245 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, effort to obtain various information from the vast amount of social network services (SNS) big data generated in daily life has expanded. SNS big data comprise sentences classified as unstructured data, which complicates data processing. As the amount of processing increases, a rapid processing technique is required to extract valuable information from SNS big data. We herein propose a system that can extract human sentiment information from vast amounts of SNS unstructured big data using the naive Bayes algorithm and natural language processing (NLP). Furthermore, we analyze the effectiveness of the proposed method through various experiments. Based on sentiment accuracy analysis, experimental results showed that the machine learning method using the naive Bayes algorithm afforded a 63.5% accuracy, which was lower than that yielded by the NLP method. However, based on data processing speed analysis, the machine learning method by the naive Bayes algorithm demonstrated a processing performance that was approximately 5.4 times higher than that by the NLP method.

목차

Abstract
I. INTRODUCTION
II. RELATED STUDIES
III. EMOTIONAL PATTERN ANALYSIS SYSTEM
IV. PERFORMANCE ANALYSIS OF THE PROPOSED SYSTEM
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000405754