메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jin-Hyun Park (Gyeongnam National Univ. of Science and Technology) Young-Kiu Choi (Pusan National University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.18 No.2
발행연도
2020.6
수록면
106 - 114 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We propose appropriate criteria for obtaining fish species data and number of learning data, as well as for selecting the most appropriate convolutional neural network (CNN) to efficiently classify exotic invasive fish species for their extermination. The acquisition of large amounts of fish species data for CNN learning is subject to several constraints. To solve these problems, we acquired a large number of fish images for various fish species in a laboratory environment, rather than a natural environment. We then converted the obtained fish images into fish images acquired in different natural environments through simple image synthesis to obtain the image data of the fish species. We used the images of largemouth bass and bluegill captured at a pond as test data to confirm the effectiveness of the proposed method. In addition, to classify the exotic invasive fish species accurately, we evaluated the trained CNNs in terms of classification performance, processing time, and the number of data; consequently, we proposed a method to select the most effective CNN.

목차

Abstract
I. INTRODUCTION
II. CONVOLUTIONAL NEURAL NETWORK
III. DATASET CONSTRUCTION
IV. DISCUSSION AND CONCLUSIONS
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000406019