메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kwang-Baek Kim (Silla University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering 제9권 제6호
발행연도
2011.12
수록면
637 - 640 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The hybrid neural networks have characteristics such as fast learning times, generality, and simplicity, and are mainly used to classify learning data and to model non-linear systems. The middle layer of a hybrid neural network clusters the learning vectors by grouping homogenous vectors in the same cluster. In the clustering procedure, the homogeneity between learning vectors is represented as the distance between the vectors. Therefore, if the distances between a learning vector and all vectors in a cluster are smaller than a given constant radius, the learning vector is added to the cluster. However, the usage of a constant radius in clustering is the primary source of errors and therefore decreases the recognition success rate.
To improve the recognition success rate, we proposed the enhanced hybrid network that organizes the middle layer effectively by using the enhanced ART1 network adjusting the vigilance parameter dynamically according to the similarity between patterns. The results of experiments on a large number of calling card images showed that the proposed algorithm greatly improves the character extraction and recognition compared with conventional recognition algorithms.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. HYBRID NEURAL NETWORKSFOR PATTERN RECOGNITION
Ⅲ. PERFORMANCE EVALUATIONS
Ⅳ. CONCLUSIONS
REFERENCES

참고문헌 (7)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000411118