메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Juyoung Lee (Yonsei University) Chunkyun Park (Yonsei University) Hyunjoong Kim (Yonsei University)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제48권 제2호
발행연도
2023.2
수록면
150 - 161 (12page)
DOI
10.7840/kics.2023.48.2.150

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the traffic industry, the automatic accident detection system is a major concern. Although image-based and radar-based traffic accident detection systems are commonly employed, they have several drawbacks, including the need to secure the camera’s field of view, a high rate of false alarms, and a lengthy detection time. Using a real-time acoustic surveillance system and the classification algorithm via Convolutional Neural Network (CNN), this article proposes several methods for identifying abnormal situations, such as a car crash or tire skid sound, to overcome the limitations of existing methods. We create an audio database by collecting sounds from two tunnels in South Korea using self-made microphones for eight months and classifying them into three categories: car crash, tire skid, and normal environmental sounds. We establish a three-step classification procedure using an algorithm. We compare the detection rate and false alarm rate of our proposed method to those of deep learning techniques including MLP (Multi-Layer Perceptron), Long-Short Term Memory, ShuffleNetv2, and MobileNetv2. In addition, we present a method for filtering out irrelevant sound data to improve the computational efficiency of our approach.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Dataset
Ⅲ. Proposed Methods
Ⅳ. Experiments
Ⅴ. Results
Ⅵ. Conclusion
References

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-567-000453234