메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Zitong Qu (Korea Maritime & Ocean University) Cuong Truong Ngoc (Korea Maritime & Ocean University) Bao Long Le Ngoc (Korea Maritime & Ocean University) Seungpil Lee (Korea Maritime & Ocean University) Hwanseong Kim (Korea Maritime & Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제47권 제1호
발행연도
2023.2
수록면
34 - 41 (8page)
DOI
10.5916/jamet.2023.47.1.34

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The container throughput in a container logistics system is an important technical index, irrespective of the method used to manage and forecast the port throughput. The Qingdao port, one of the most important ports in North China, has the advantage of being located in the "One belt One Road" position. At present, the forecasting method for the container transportation throughput of Qingdao port still needs to be optimized, and a model that can predict its development trend needs to be constructed. Echo state networks (ESN) have been widely used in time-series prediction owing to their simple structure and fast convergence speed. To solve the problem of the applicability of the random weight matrix generated in the ESN to a specific time series, this study proposes an improved particle swarm optimization (PSO) algorithm to optimize partial random weights in the ESN. Compared to the standard particle swarm optimization algorithm, the inertia weight and learning factor were adjusted to improve the optimization performance of the algorithm. Furthermore, by comparing the historical data with the predicted values, the prediction accuracy of the model was found to be over 98%. The container throughput of Qingdao port from 2022 to 2024 was predicted, which showed that the container throughput of ingdao Port will maintain a rapid and stable growth trend.

목차

Abstract
1. Introduction
2. Materials and methods
3. Simulation results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-559-000455623