메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Monika Dhiman (Panjab University) Akash Sharma (Panjab University) Sarbjeet Singh (Panjab University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.16 No.4
발행연도
2022.12
수록면
199 - 210 (12page)
DOI
10.5626/JCSE.2022.16.4.199

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recognition and classification of human actions is a fundamental but difficult computer vision task that has been studied by several researchers worldwide in recent years. Pose estimation is a widely used technology for recognizing human actions. It has several applications, especially in the field of computer vision, where it can be used to recognize basic as well as complex human actions. This research provides a novel framework for identifying and classifying human actions which include five categories: standing, walking, waving, punching, and kicking. The dataset used for recognition and classification purposes is generated using the videos that are recorded using a smartphone and a 2D pose estimation technique has been applied to extract the features from the human body. The machine learning (ML) classifiers have been trained on a custom-built dataset. While all algorithms nearly performed well in the classification task, the light gradient-boosting machine (LGBM) outperformed the rest in terms of accuracy (98.80%).

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. DATASET FOR RECOGNITION OF HUMAN ACTIONS
IV. DESIGN AND METHODOLOGY
V. RESULTS AND DISCUSSION
VI. CONCLUSION
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0